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Abstract: Advances in the retinal layer segmentation of structural optical coherence 
tomography (OCT) images have allowed the separation of capillary plexuses in OCT 
angiography (OCTA). With the increased scanning speeds of OCT devices and wider field 
images (≥10 mm on fast-axis), greater retinal curvature and anatomic variations have 
introduced new challenges. In this study, we developed a novel automated method to segment 
seven retinal layer boundaries and two retinal plexuses in wide-field OCTA images. The 
algorithm was initialized by a series of points forming a guidance point array that estimates 
the location of retinal layer boundaries. A guided bidirectional graph search method 
consisting of an improvement of our previous segmentation algorithm was used to search for 
the precise boundaries. We validated the method on normal and diseased eyes, demonstrating 
subpixel accuracy for all groups. By allowing independent visualization of the superficial and 
deep plexuses, this method shows potential for the detection of plexus-specific peripheral 
vascular abnormalities. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

Optical coherence tomography (OCT) [1] is an interferometric imaging technology capable of 
acquiring high resolution, three-dimensional (3D) images of biological tissue such as the 
retina through non-invasive and non-contact laser scanning. It has been widely used in the 
diagnosis of ophthalmic diseases, such as glaucoma [2], diabetic retinopathy (DR) [3], and 
age-related macular degeneration (AMD) [4], by quantifying the thicknesses of relevant slabs. 
OCT angiography (OCTA) is a novel clinical tool for the early diagnosis of the diseases 
affecting retinal circulation and assessment of progression. Based on the variation of OCT 
signals between B-scans at the same position, OCTA can provide depth-resolved flow signals 
for the microvasculature. Prior studies have proved that slab-based OCTA can improve the 
visualization and interpretation of OCTA volumes [5–7], and a recent study also showed that 
vascular abnormalities are better visualized by separating the retinal circulation into three 
vascular layers [8,9]. Therefore, automated segmentation of the retinal layer boundaries is 
essential to accurately assess anatomic thickness and capillary plexuses. 

The segmentation of retinal layers is a challenging task that has been approached through 
a diversity of methods [10–29]. They all exploit the reflectance contrast between adjacent 
retinal layers to distinguish them [10–12]. These methods have relied on the gradient 
information for active contour [13,14] and graph search [15–18], or conversely on training 
supervised machine learning methods such as the support vector machine [19], random 
forests [20], deep learning [21,22], probability-based approach [23], and other methods [24–
29]. With increasing advancements in swept-source OCT (SS-OCT) technology, wide-field 
OCT imaging has been enabled to evaluate larger portions of the retina [30]. However, the 
wide-field OCT poses new challenges to the existing segmentation algorithms. First, SS-OCT 
systems, using 1050-nm center wavelength lasers, have decreased the axial resolution and 
back-scattered reflectance contrast compared to those of the spectral domain commercial 
devices that use 840-nm center wavelength, which reduces the pixels contained within retinal 
layers as well as the number of features that can be extracted for machine learning 
segmentation alternatives. Second, due to the large retinal curvature-associated aberration in 
the wider field of view, the focusing of wide-field OCT is compromised in the peripheral 
regions. Third, retinal curvature and anatomic variations are increased as the field of view 
increases. These characteristics make single source path search algorithms (e.g., graph search) 
prone to local errors that can be propagated further by the search routine. 

Previously, we developed a successful segmentation algorithm based on directional graph 
search for 3 × 3- and 6 × 6-mm scans of the retina [17]. To address the new challenges 
associated with wide-field scans, we propose here the Guided Bidirectional Graph Search 
(GB-GS) method, in which an array of points is used to guide the graph search algorithm in 
two directions to identify the seven retinal boundaries. The method consists of three steps. 
First, a guidance point array (GPA) was found to represent the approximate positions of the 
boundaries. Then, a bidirectional graph search was applied on each point contained in the 
GPA but not included in any previous paths. The shortest paths between each of the other 
points in the GPA were used to generate the final boundaries. 

2. Methods 

2.1 Data acquisition 

The study was approved by an Institutional Review Board/Ethics Committee of Oregon 
Health & Science University, and informed consent was collected from all participants, in 
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compliance with the Declaration of Helsinki. Volumetric scans of both eyes were acquired by 
a prototype 200-kHz SS-OCT system with a 1050-nm central wavelength covering the 10-
mm (fast-axis) × 8-mm (slow-axis) retinal regions. Two repeated B-scans were taken at each 
of 400 raster positions, and each B-scan was comprised of 850 A-lines. B-scans at the same 
position were averaged to improve signal-to-noise ratio of the structural OCT. The OCTA 
data was calculated by the split-spectrum amplitude decorrelation angiography (SSADA) 
algorithm [31]. 

2.2 Preprocessing 

First, we normalized the B-scan and then flattened it using the center of mass as reference to 
prevent errors caused by significant tissue curvature [17]. Then, we generated gradient maps 
to emphasize the transitions between retinal layers with different reflectivity. We reduced the 
speckle noise by applying a median filter (kernel size - width × height: 3 × 3) and a mean 
filter (kernel size - width × height: 7 × 3) that preserved the continuity of retinal layer 
boundaries primarily along horizontal direction. Because the boundaries being segmented 
exhibited two different intensity transition modes (Fig. 1) (light-to-dark and dark-to-light) 
[17], we generated two gradient maps,  AG  representing dark-to-light transitions and BG  

representing light-to-dark transitions (Eq. (1)) 
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where ( ),I x z  was the OCT reflectance value at position ( ),x z , M  was the length of A-

scans in pixels, and N  was the width of B-scans in pixels. 

 

Fig. 1. Representation of the retinal layer boundaries that can be segmented by the algorithm. 
(A) A representative wide-field B-scan across the macula of a healthy subject before 
segmentation. (B) Segmentation of seven retinal boundaries: ILM (inner limiting membrane), 
NFL (nerve fiber layer), GCL (ganglion cell layer), IPL (inner plexiform layer), INL (inner 
nuclear layer) OPL (outer plexiform layer), ONL (outer nuclear layer), EZ (ellipsoid zone), 
RPE (retinal pigment epithelium), BM (Bruch’s membrane). 

From the gradient map   AG , we retrieved the boundaries between the vitreous and the 

inner limiting membrane (ILM), the inner nuclear layer (INL) and the outer plexiform layer 
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(OPL), as well as the upper boundary of the ellipsoid zone (EZ) (Fig. 2(A)). From the 
gradient map   AG , we retrieved the remaining four boundaries that were between the nerve 

fiber layer (NFL) and the ganglion cell layer (GCL), between the inner plexiform layer (IPL) 
and the inner nuclear layer (INL), between the OPL and the outer nuclear layer (ONL), and 
between the retinal pigment epithelium (RPE) and Bruch’s membrane (BM) (Fig. 2(B)). 

 

Fig. 2. Two gradient maps used for layer segmentation. (A) Gradient map   AG . 

Vitreous/ILM, INL/OPL and EZ were segmented using this map. (B) Gradient map BG . 

NFL/GCL, IPL/INL, OPL/ONL, and RPE/BM were segmented using this map. 

2.3 Guidance point array 

In this step, we generated for each boundary an array of points indicating its approximate 
position based on information extracted from the gradient maps. This GPA regulates the 
subsequent bidirectional graph search for the actual layer boundaries. GPAs were generated 
in a pre-determined order, taking advantage of the characteristics of gradient maps and retinal 
anatomy to minimize deviations from the correct boundaries (Fig. 3). First, the vitreous/ILM 
and upper EZ boundaries were processed from gradient map  AG , as they exhibited the 

greatest contrast with surrounding tissue. Then, using the EZ layer as the upper boundary, the 
set of points corresponding to the RPE/BM’s GPA was recognized from the BG  gradient 

map. Subsequently, the upper boundary was fixed at the vitreous/ILM boundary, and BG  was 

used to sequentially extract the GPA for the OPL/ONL, which had the EZ layer as the lower 
boundary. Then we extracted the GPAs for the IPL/INL and NFL/GCL, for which each GPA 
served as the lower boundary of the next GPA. Finally, the GPA for the INL/OPL was 
generated from the gradient map  AG  using the IPL/INL and OPL/ONL as upper and lower 

boundaries respectively. 

 

Fig. 3. The search order of GPAs in the guided bidirectional graph search algorithm. 

The first GPAs to be identified were the vitreous/ILM and upper EZ boundaries, which 
were not limited by any reference boundaries. To localize them, we first reduced speckle 
noise by down-sampling the gradient map  AG  and the B-scan by a factor of five to a size of 

170 × 208 pixels. The vitreous/ILM boundary plays a very import role in subsequent 
operations. For the GPA identification, we compounded a new B-scan with enhanced contrast 
between the vitreous and the ILM by adding the gradient map  AG  to the normalized B-scan. 

We then binarized the enhanced B-scan by thresholding pixels with OCT reflectance values 
below the average reflectance value, which removes nonzero pixels in the vitreous. Then, the 
first nonzero pixels in each A-line were selected to form the GPA of the vitreous/ILM. 
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The second GPA to be recognized was the upper EZ boundary. Either this or the 
previously identified vitreous/ILM boundary contain the lowest gradient values in each A-line 
in the map   AG , making it easy to identify the EZ. Then, the binary image was up-sampled to 

the original number of pixels, and the 170 GPA points identified were reassigned to the A-
lines with indices 5n + 1 (n = 0…169). 

After the first two GPAs were generated from enhanced B-scans, the remaining five were 
obtained from the corresponding gradient maps, searching one of every five A-lines restricted 
to the corresponding upper and lower boundaries assigned above. These GPAs were first 
enhanced by a horizontal gradient operator (Eq. (2)), and the first point with parameter t<-
0.02 (where t is the threshold assigned to '

BG ) was selected for the corresponding GPA (Fig. 

4). 

 '

1

* 0

1
BB GG

− 
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 (2) 

 

Fig. 4. Search guidance points in an A-scan. Red lines indicate the positions of the NFL/GCL, 

IPL/INL, OPL/ONL, and RPE/BM in (A), (B) and (C). (A) The BG  of one B-scan and an A-

scan of interest (vertical blue line). (B) Gradient intensities of the A-scan. (C) Intensities of (B) 
after applying (Eq. (2)). 

Due to the relatively low contrast of image, points contained in the GPA were 
occasionally distant from the actual boundary (Fig. 5). Based on the prevalence of noise and 
relative flat GPA curves in the wide field of view, we used a mean filter (kernel size - width × 
height: 9 × 1) on the GPA to remove unreliable points and ensure the accuracy of the 
operation described below in Section 2.4. 
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Fig. 5. Removal of unreliable points from the GPA. (A) GPA points before filtering. (B) GPA 
points after filtering. Red asterisks indicate the points removed from the GPA. 

2.4 Guided bidirectional graph search 

Once the GPAs were identified, we implemented a guided bidirectional graph search 
algorithm for retinal layer segmentation (Fig. 6(A)). For any point S, we searched for graph 
points in two directions (left and right). For the next point L (or R), we appointed 5 nearby 
candidate points in the adjacent A-line (Figs. 6(B-C)) and chose the one with minimum 
gradient as the next node in the path. Unlike our previous directional graph search algorithm 
[17], we started from a virtual point located outside the image (Fig. 6(B)) and crossed a 
collection of points that may or may not fall in the GPA of the boundary under scrutiny. All 
GPA points crossed by this searched path were dropped from subsequent analysis (Figs. 7(A-
B)), and guided bidirectional graph search started again from the next GPA point that was not 
contained in any previous graph recognized for the current boundary (Fig. 7(B)). This process 
was repeated, generating each time a potentially different graph until all GPA points belonged 
to one of the graphs (Figs. 7(B-E)). Then, all graphs thus generated were merged by the 
rationale explained in Section 2.5 below. 

 

Fig. 6. (A) Graph search. (B) Directional graph search. The virtual start point, V, was located 
outside the image. (C) Guided bidirectional graph search. The start point, S, of any graph 
search is necessarily contained in the GPA. L and R were points searched by the bidirectional 
graph search algorithm. After concluding the graph search, a new graph was generated for the 
next GPA point not included in any of the previous graphs. 
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Fig. 7. Guided bidirectional graph search. Once the GPA was selected, a first graph search was 
performed starting from a virtual point outside of the image (A). GPA points that were located 
on the first path (red points) and points left out of the graph (blue asterisks) were identified, 
and a second path was created bi-directionally by graph search, starting from the first GPA 
point left out of the previous path (in B, blue star, red arrow). Blue asterisks crossed by the 
second path became red points and did not trigger the start of a future graph search. The 
process was repeated (C-E) until all blue asterisks eventually form part of one candidate path. 

Although there were enough points in the GPA to support a point-to-point shortest path 
search, we preferred the bidirectional graph search to detect the boundary because we 
observed that some points in the GPA were outside the manually-segmented interfaces. 
Therefore, the graph of the layer boundary should not be forced to cross all GPA points, and a 
different boundary detection and merging scheme was necessary. 

2.5 Path merging 

The preceding procedures generated several possible paths for each boundary in a B-scan. To 
obtain the final boundary, we evaluated the deviation of each candidate path from the GPA in 
sections of a B-scan (Fig. 8). For example, from an interval bounded by three points of the 
GPA with indices a, b, and c, we selected the most accurate of all paths within this interval 
and assigned it to all A-lines with indices between a and b. To decide the most accurate path 
within an interval, we designed the evaluation function in (Eq. (3)). 

 ( ) ( ) ( ) ( ) ( ) ( ) min(  )i i ii
u p a g a p b g b p c g c= − + − + −  (3) 

where ( )ip x  was the value of the i -th candidate path at positon x = a, b, c. ( )  g x  was the 

GPA evaluated at points x, and the path with the lowest u  was chosen between a and b (Fig. 
8). Then, the process was repeated for the A-lines in the following interval, i.e., with indices 
between b and c, etc. 

 

Fig. 8. Final boundary (red) after selection of the path with minimum deviation from the GPA 
points (Eq. (3)). Two intervals between GPA points a, b, and c were emphasized, and three 
different paths similar to those generated in (Fig. 7) were represented in light blue, dark blue, 
and orange color. According to (Eq. (3)), the pixels crossed by the light blue path were 
assigned to the final path between points a and b, and the pixels crossed by the dark blue path 
were assigned to the final path between b and c. 
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2.6 Segmentation of capillary plexuses 

We extracted two vascular plexuses from the segmented OCTA volume (Figs. 9(A-B)): the 
superficial vascular complex (SVC) (Fig. 9(C) and the deep vascular complex (DVC) (Fig. 
9(D)). En face angiograms of the capillary plexuses were generated by the maximum 
projection of OCTA flow signals within the slab. 

 

Fig. 9. The positions of two inner retinal plexuses defined for wide-field OCTA scans (10 × 8- 
mm). (A) Segmented structural OCT scan from a healthy eye. (B) The upper and lower 
boundaries of two vascular plexuses. The superficial vascular complex (SVC) was defined 
between the vitreous/ILM (red line) and the SVC/deep vascular complex (DVC, green line). 
The SVC/DVC was defined between vitreous/ILM and the IPL/INL [17], represented in (A). 
The DVC is defined between the SVC/DVC and OPL/ONL (blue line). (C) En face angiogram 
of the SVC. The vertical yellow line in (C) marks the position of the B-scan slice in (A). (D) 
En face angiogram of the DVC. 

3. Results 

3.1 Study population 

We tested our segmentation method on normal eyes and eyes with glaucoma, diabetic 
retinopathy, and retinitis pigmentosa (Table 1). For all cases the seven layers were segmented 
to identify the vitreous/ILM, NFL/GCL, IPL/INL, INL/OPL, OPL/ONL, EZ, and RPE/BM. 

Table 1. Tested wide-field OCT volumetric data 

 
healthy 
controls 

Glaucoma 
Diabetic 

retinopathy 
Retinitis 

pigmentosa 

Eyes 10 6 7 6 

Volumetric 
scans 

10 10 8 9 

3.2 Segmentation performance 

We ran the GB-GS algorithm in Matlab R2017a on a desktop PC equipped with an Intel(R) 
Core(TM) i7-6700K @4.0GHz CPU and 32 GB RAM. The average run time of our algorithm 
was 0.3 seconds per B-scan. Our method correctly segmented retinal layer boundaries, even 
in the areas of large vessel shadows (Fig. 10(A)) and small cysts (Figs. 10(B-C)). 
Segmentation errors were present in areas of extremely low contrast between layers (Fig. 
10(D)); in areas with retinal neovascularization, which could significantly affect the surface 
of the ILM (Fig. 10(E)); and in an area with a partially separated epiretinal membrane (Fig. 
10(F)). 
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Fig. 10. Retinal segmentation results. (A-C) Correct segmentation. The red arrow positions 
were correctly segmented, even though the boundaries were affected by shadows (A) and small 
cysts (B-C). (D-F) Examples of incorrect segmentation. The red arrow points indicate the areas 
where the segmentation failed owing to extremely low contrast (D), retinal neovascularization 
(E), and a partially separated epiretinal membrane (F). 

To evaluate segmentation accuracy, we compared the automatic segmentation results with 
manual segmentation performed by a masked grader. For each eye, 20 B-scans of one 
volumetric data set were randomly selected for evaluation. The position of the manual 
boundary was subtracted from the position of the automatic boundary without any manual 
corrections in all A-lines under scrutiny, and the segmentation accuracy was determined 
(Table 2). Subpixel accuracy was present for the four groups, with the most accurate being 
the vitreous/ILM boundary, which is the one with the highest perceived contrast. 

Table 2. Difference in segmentation between manual grading and automated grading for 
different clinical cases 

Diagnosis Vitreous/ILM NFL/GCL IPL/INL INL/OPL OPL/ONL EZ RPE/BM 

Healthy 0.77 ± 3.58 1.21 ± 7.70 1.54 ± 9.13 1.65 ± 9.02 2.09 ± 9.74 1.98 ± 9.19 1.82 ± 8.69 

Glaucoma 1.10 ± 8.69 1.21 ± 7.48 1.32 ± 7.43 1.32 ± 7.15 1.38 ± 7.15 2.42 ± 8.80 2.53 ± 8.75 

Diabetic 
retinopathy 

0.72 ± 3.25 0.88 ± 3.41 1.87 ± 6.88 2.26 ± 8.20 2.70 ± 9.35 3.08 ± 9.68 2.97 ± 9.35 

Retinitis 
pigmentosa 

1.21 ± 8.09 
2.70 ± 
11.39 

3.14 ± 
11.72 

3.69 ± 
12.54 

4.46 ± 
13.37 

5.06 ± 
13.92 

5.12 ± 
13.64 

Differences in segmentation between manual grading and automated grading were measured in micron and presented 
as means ± standard deviations. The digital pixel size in the axial direction was 5.5 µm. 

 
Thanks to the stability and robustness of GB-GS, our method can also be used to segment 

small field of view OCT scans (3 × 3- and 6 × 6-mm). To evaluate the performance on these 
images, we randomly selected 20 volumetric scans acquired by a 70-kHz commercial 
AngioVue system (RTVue-XR; Optovue, Inc.) (Table 3). The segmentation errors were 
compared to our previous algorithm developed by Zhang et al [17] as well as the publicly 
available OCTExplorer software (download from https://www.iibi.uiowa.edu/oct-reference) 
[27,32,33]. 

Table 3. Tested AngioVue OCT volumetric data 

 3 × 3-mm 6 × 6-mm 

Diagnosis 
Diabetic 

retinopathy 
Healthy 

Diabetic 
retinopathy 

Healthy 

Eyes 5 5 5 5 
Volumetric 

scans 
5 5 5 5 
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We randomly selected 31 B-scans from each volumetric scan, for a total of 620 B-scans. 

For each B-scan, we applied these three methods to segment 7 retinal boundaries, 
respectively. The segmentation results of the three methods were compared to manual grading 
(Table 4). Apparently, our method is superior to other two methods on at least five of seven 
layers. 

Table 4. Differences in segmentation between segmentation algorithms and manual 
grading for different size of view field OCT scans 

 Vitreous 
/ILM 

NFL 
/GCL 

IPL 
/INL 

INL 
/OPL 

OPL 
/ONL 

EZ 
RPE 
/BM 

3×3-mm 
 

OCTExplorer 9.83±2.75 15.71±16.38 14.64±12.04 15.59±8.44 11.63±10.29 3.89±5.62 11.82±4.73 

Zhang et al 3.20±2.50 7.45±6.30 8.09±7.58 6.31±7.33 7.69±8.41 2.95±2.61 4.70±3.31 

Ours 3.04±0.48 5.70±7.19 6.20±7.45 4.28±4.44 4.09±4.12 3.32±1.76 5.61±3.99 

6×6-mm 

OCTExplorer 9.66±3.14 13.08±10.79 11.13±9.35 14.11±7.77 10.18±7.29 4.31±4.47 12.52±5.11 

Zhang et al 3.58±2.93 11.94±17.97 9.07±12.50 6.15±8.16 7.55±10.52 3.61±3.82 6.03±4.81 

Ours 3.11±1.37 6.05±11.81 6.65±11.65 5.85±11.03 4.83±8.75 4.80±9.20 5.79±8.71 

3.3 Clinical applications 

To evaluate the benefits of our segmentation method in the computation of clinically useful 
parameters, we applied it to the detection of the non-perfusion area in one eye with DR. 
Capillary nonperfusion is an important feature of DR [34,35], and quantification of it may be 
an important biomarker of disease progression. In particular, the larger scanning area of wide-
field OCTA will likely improve the sensitivity of this metric for early stages of the disease 
because the manifestations of capillary dropout in DR begin in the peripheral retina rather 
than the central macula. 

Using our automated segmentation method, we segmented each layer on a structural OCT 
B-scan (Fig. 11(A)). The en face angiogram of the SVC and DVC flow were generated (Figs. 
11(B-C)), and a slab subtraction algorithm [6,7,36] was applied to reduce the prevalence of 
projection artifacts in the DVC. Then, we generated a nonperfusion map (Fig. 11(D)) using an 
automated algorithm developed previously [6,7]. The resulting images demonstrated areas of 
capillary nonperfusion over 7.04 mm2 that were specific to individual plexuses (Figs. 11(B-
C)), allowing plexus-specific detection of nonperfusion in OCTA. 
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Fig. 11. Segmentation results from a representative diabetic retinopathy case. (A) 
Segmentation of layer boundaries. (B) En face angiogram of the superficial vascular complex. 
The yellow line in (B) marks the position of the B-scan slice in (A). (C) En face angiogram of 
the deep vascular complex. (D) Nonperfusion area in the superficial vascular complex 
angiogram. (E) Retinal thickness map between vitreous/ILM and RPE/BM. 

Another possible use of wide-field OCTA is identification of neovascularization in DR 
eyes. A 10 × 25-mm wide-field OCTA, produced by montaging four scans, demonstrates a 
large area of neovascularization temporal to the macula (Fig. 12). Because wide-field-OCTA 
visualizes the neovascularization clearly without leakage, quantification of neovascularization 
is possible, allowing objective monitoring of treatment response. 

 

Fig. 12. Wide-field OCTA of a patient with proliferative diabetic retinopathy. A large area of 
neovascularization (yellow) temporal to the macula was present. This image is montaged from 
four 10 × 8-mm scans. The total size is 10 × 25-mm. The traditional 3 × 3- and 6 × 6-mm 
commercial OCTA images at the central macular area are indicated by dashed squares 
respectively. Unlike the fluorescein angiograms, OCTA demonstrates the neovascularization 
clearly without leakage and allows for quantification. 

4. Discussion 

In this study, we demonstrated an improvement over our previous graph search retinal layer 
segmentation algorithm and OCTExplorer algorithm to achieve a more accurate delineation 
of the seven layer boundaries imaged by wide-field OCT scanning. The method was able to 
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segment both healthy and diseased retinas, including hypo-reflective regions affected by 
vascular shadows and retinal cysts. 

The main advantage of this algorithm is the ability to accurately segment retinal layers 
over a large scanning area. Traditional OCTA had been restricted from its inception to narrow 
fields of view, i.e., 3 × 3-, 4.5 × 4.5-, and 6 × 6-mm, which are still standard in commercial 
machines. Wide-field OCTA is a natural evolution of this technology, compelled by the 
clinical demand for better visualization of the peripheral retina. Stitching many images by 
registration techniques is an alternative to generate retinal angiograms of larger size, and it is 
inherently better to montage a few wide-field scans (e.g., 10 × 6-mm) than numerous narrow-
field scans (e.g., 6 × 6-mm). For instance, the angiogram represented in Fig. 12 was generated 
by montaging of four 10 × 8-mm scans, whereas at least ten 6 × 6-mm scans would be needed 
to represent the same area. However, the advantage of wide-field scanning comes at the 
expense of more challenging segmentation across ultra-wide B-scans. Our method based on 
GB-GS not only can handle the macular area, but also can accurately segment the optic disc 
region and peripheral retinal region. 

Recently, segmentation of retinal layers and pathological structures has also been 
accomplished by alternative supervised machine learning methods such as deep learning 
[21,22]. An advantage of our current guided graph search method is that unlike deep learning 
solutions, it does not need a large, annotated data set to be used for network training, and 
hence it is suitable for small studies, for data acquired by lab-built prototype devices, and for 
diseases in which even manual segmentation of boundaries is uncertain and could introduce 
confusion during training. Moreover, the machine learning methods reported previously only 
generated probability maps and still needed a post-processing step (e.g., graph search or 
conditional random fields) to generate sharp boundaries. In contrast, our results show that the 
method proposed here is generalizable to different retinal pathologies. This method is 
superior to previous graph search solutions in that it considers the laminar structure of the 
retina and performs the search in two directions, relying on the GPA to prevent graph 
deviations from the anatomically connected boundaries. Finally, segmentation is performed 
faster than machine learning alternatives owing to the lower computational requirements. 

The limitations of the software can be summarized as follows. First, the method depends 
strongly on the gradient information at the layer boundaries and might fail for acquisitions 
with extremely low contrast between layers. Second, due to the order in which boundary 
detection is defined, the segmentation is sensitive to any errors in segmentation of previous 
graphs bounding the position of its upper and lower limits. To address this issue, the 
boundaries least likely to be erroneously segmented owing to the highest contrast were 
chosen to precede the segmentation of the boundaries more likely to be affected by disease. 

5. Conclusions 

We proposed a novel automatic segmentation method to find the boundaries of seven retinal 
layer boundaries in wide-field OCTA images. Our algorithm showed sub-pixel accuracy in 
both normal and diseased eyes. The extraction of thin slab boundaries over a large area has 
great potential for use in the improved diagnosis and progression assessment of diseases. This 
is especially true for diseases that begin from the peripheral retina and affect large areas, such 
as DR and inherited retinal diseases, where evaluation by OCTA was limited in the past to a 
small field of view. 
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